Journal of Drug and Alcohol Research
vol. 2 (2013), Article ID 235651, 11 pages
Full-Text PDF
doi:10.4303/jdar/235651
Eric J. Nestler
Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA
Received 2 November 2012; Revised 10 November 2012; Accepted 20 November 2012
Abstract
ΔFosB is a member of the Fos family of transcription factors. While all other family members are induced rapidly but transiently in response to a host of acute stimuli, ΔFosB is unique in that it accumulates in response to repeated stimulation due to its unusual protein stability.
Such a prolonged induction of ΔFosB, within the brain’s reward regions, has been implicated in animal models of drug addiction, with a wealth of evidence indicating that ΔFosB promotes reward and motivation and serves as a key mechanism of drug sensitization and increased drug self-administration. This has been validated in humans postmortem, with elevated ΔFosB levels seen in reward regions of the addicted brain.
As a transcription factor, ΔFosB produces this behavioral phenotype by regulating the expression of specific target genes. We are identifying such transcriptional targets of ΔFosB by use of a candidate gene approach as well as by use of genome-wide methods. Recent work has analyzed chromatin remodeling—changes in the posttranslational modifications of histones and other nuclear proteins at drug-regulated genes—to delineate the detailed molecular mechanisms by which ΔFosB regulates target gene expression in vivo to mediate drug-induced synaptic, neural, and behavioral plasticity. These studies of ΔFosB are providing new insight into the molecular basis of drug addiction, which is defining a host of new targets for possible therapeutic development.
References
- I. N. Alibhai, T. A. Green, J. A. Potashkin, and E. J. Nestler, Regulation of fosB and ?fosB mRNA expression: in vivo and in vitro studies, Brain Res, 1143 (2007), 22–33.
- E. Ang, J. Chen, P. Zagouras, H. Magna, J. Holland, E. Schaeffer, et al., Induction of nuclear factor-B in nucleus accumbens by chronic cocaine administration, J Neurochem, 79 (2001), 221–224.
- M. Asanuma and J. L. Cadet, Methamphetamine-induced increase in striatal NF-B DNA-binding activity is attenuated in superoxide dismutase transgenic mice, Mol Brain Res, 60 (1998), 305–309.
- O. Berton, H. E. Covington 3rd, K. Ebner, N. M. Tsankova, T. L. Carle, P. Ulery, et al., Induction of ?FosB in the periaqueductal gray by stress promotes active coping responses, Neuron, 55 (2007), 289–300.
- J. A. Bibb, J. Chen, J. R. Taylor, P. Svenningsson, A. Nishi, G. L. Snyder, et al., Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5, Nature, 410 (2001), 376–380.
- A. Bird, Perceptions of epigenetics, Nature, 447 (2007), 396–398.
- T. L. Carle, Y. N. Ohnishi, Y. H. Ohnishi, I. N. Alibhai, M. B. Wilkinson, A. Kumar, et al., Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for ?FosB stability, Eur J Neurosci, 25 (2007), 3009–3019.
- J. Chen, M. B. Kelz, B. T. Hope, Y. Nakabeppu, and E. J. Nestler, Chronic Fos-related antigens: stable variants of ?FosB induced in brain by chronic treatments, J Neurosci, 17 (1997), 4933–4941.
- J. Chen, M. B. Kelz, G. Zeng, N. Sakai, C. Steffen, P. E. Shockett, et al., Transgenic animals with inducible, targeted gene expression in brain, Mol Pharmacol, 54 (1998), 495–503.
- J. Chen, S. S. Newton, L. Zeng, D. H. Adams, A. L. Dow, T. M. Madsen, et al., Downregulation of the CCAAT-enhancer binding protein beta in ?FosB transgenic mice and by electroconvulsive seizures, Neuropsychopharmacology, 29 (2004), 23–31.
- J. Chen, H. E. Nye, M. B. Kelz, N. Hiroi, Y. Nakabeppu, B. T. Hope, et al., Regulation of ?FosB and FosB-like proteins by electroconvulsive seizure and cocaine treatments, Mol Pharmacol, 48 (1995), 880–889.
- J. Chen, Y. Zhang, M. B. Kelz, C. Steffen, E. S. Ang, L. Zeng, et al., Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: role of ?FosB, J Neurosci, 20 (2000), 8965–8971.
- C. R. Colby, K. Whisler, C. Steffen, E. J. Nestler, and D. W. Self, Striatal cell type-specific overexpression of ?FosB enhances incentive for cocaine, J Neurosci, 23 (2003), 2488–2493.
- D. Damez-Werno, Q. LaPlant, H. Sun, K. N. Scobie, D. M. Dietz, I. M. Walker, et al., Drug experience epigenetically primes Fosb gene inducibility in rat nucleus accumbens, J Neurosci, 32 (2012), 10267–10272.
- P. Dobrazanski, T. Noguchi, K. Kovary, C. A. Rizzo, P. S. Lazo, and R. Bravo, Both products of the fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts, Mol Cell Biol, 11 (1991), 5470–5478.
- M. E. Ehrlich, J. Sommer, E. Canas, and E. M. Unterwald, Periadolescent mice show enhanced ?FosB upregulation in response to cocaine and amphetamine, J Neurosci, 22 (2002), 9155–9159.
- D. Ferguson, N. Shao, J. Koo, J. Feng, V. Vialou, D. Dietz, et al., Next generation sequencing using ChIP-Seq highlights an essential role for SIRT1 in emotional plasticity, Neuroscience Meeting Planner, Program No. 778.09, Society for Neuroscience, New Orleans, LA, 2012.
- A. M. Graybiel, R. Moratalla, and H. A. Robertson, Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum, Proc Natl Acad Sci U S A, 87 (1990), 6912–6916.
- B. A. Grueter, A. J. Robison, R. L. Neve, E. J. Nestler, and R. C. Malenka, ?FosB differentially modulates nucleus accumbens direct and indirect pathway function, Proc Natl Acad Sci U S A (to appear).
- V. L. Hedges, S. Chakravarty, E. J. Nestler, and R. L. Meisel, ?FosB overexpression in the nucleus accumbens enhances sexual reward in female Syrian hamsters, Genes Brain Behav, 8 (2009), 442–449.
- N. Hiroi, J. R. Brown, C. N. Haile, H. Ye, M. E. Greenberg, and E. J. Nestler, FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine’s psychomotor and rewarding effects, Proc Natl Acad Sci U S A, 94 (1997), 10397–10402.
- N. Hiroi, G. J. Marek, J. R. Brown, H. Ye, F. Saudou, V. A. Vaidya, et al., Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures, J Neurosci, 18 (1998), 6952–6962.
- B. Hope, B. Kosofsky, S. E. Hyman, and E. J. Nestler, Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine, Proc Natl Acad Sci U S A, 89 (1992), 5764–5768.
- B. T. Hope, H. E. Nye, M. B. Kelz, D. W. Self, M. J. Iadarola, Y. Nakabeppu, et al., Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments, Neuron, 13 (1994), 1235–1244.
- H. J. Jorissen, P. G. Ulery, L. Henry, S. Gourneni, E. J. Nestler, and G. Rudenko, Dimerization and DNA-binding properties of the transcription factor ?FosB, Biochemistry, 46 (2007), 8360–8372.
- P. W. Kalivas and N. D. Volkow, The neural basis of addiction: a pathology of motivation and choice, Am J Psychiatry, 162 (2005), 1403–1413.
- G. B. Kaplan, K. A. Leite-Morris, W. Fan, A. J. Young, and M. D. Guy, Opiate sensitization induces FosB/?FosB expression in prefrontal cortical, striatal and amygdala brain regions, PLoS One, 6 (2011), e23574.
- J. A. Kauer and R. C. Malenka, Synaptic plasticity and addiction, Nat Rev Neurosci, 8 (2007), 844–858.
- M. B. Kelz, J. Chen, Carlezon Jr., W. A., Jr., K. Whisler, L. Gilden, A. M. Beckmann, et al., Expression of the transcription factor ?FosB in the brain controls sensitivity to cocaine, Nature, 401 (1999), 272–276.
- A. Kumar, K. H. Choi, W. Renthal, N. M. Tsankova, D. E. Theobald, H. T. Truong, et al., Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum, Neuron, 48 (2005), 303–314.
- Q. LaPlant and E. J. Nestler, CRACKing the histone code: cocaine’s effects on chromatin structure and function, Horm Behav, 59 (2011), 321–330.
- K. W. Lee, Y. Kim, A. M. Kim, K. Helmin, A. C. Nairn, and P. Greengard, Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens, Proc Natl Acad Sci U S A, 103 (2006), 3399–3404.
- M. L. Lehmann and M. Herkenham, Environmental enrichment confers stress resiliency to social defeat through an infralimbic cortex-dependent neuroanatomical pathway, J Neurosci, 31 (2011), 6159–6173.
- A. Levine, Y. Huang, B. Drisaldi, E. A. Griffin Jr., D. D. Pollak, S. Xu, et al., Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine, Sci Transl Med, 3 (2011), 107ra109.
- A. A. Levine, Z. Guan, A. Barco, S. Xu, E. R. Kandel, and J. H. Schwartz, CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum, Proc Natl Acad Sci U S A, 102 (2005), 19186–19191.
- J. Li, Y. Sun, and J. Ye, Electroacupuncture decreases excessive alcohol consumption involving reduction of FosB/?FosB levels in reward-related brain regions, PLoS One, 7 (2012), e40347.
- H. F. Liu, W. H. Zhou, H. Q. Zhu, M. J. Lai, and W. S. Chen, Microinjection of M5 muscarinic receptor antisense oligonucleotide into VTA inhibits FosB expression in the NAc and the hippocampus of heroin sensitized rats, Neurosci Bull, 23 (2007), 1–8.
- I. Maze, H. E. Covington 3rd, D. M. Dietz, Q. LaPlant, W. Renthal, S. J. Russo, et al., Essential role of the histone methyltransferase G9a in cocaine-induced plasticity, Science, 327 (2010), 213–216.
- C. A. McClung and E. J. Nestler, Regulation of gene expression and cocaine reward by CREB and ?FosB, Nat Neurosci, 6 (2003), 1208–1215.
- C. A. McClung, P. G. Ulery, L. I. Perrotti, V. Zachariou, O. Berton, and E. J. Nestler, ?FosB: a molecular switch for long-term adaptation in the brain, Mol Brain Res, 132 (2004), 146–154.
- J. McDaid, J. E. Dallimore, A. R. Mackie, and T. C. Napier, Changes in accumbal and pallidal pCREB and ?FosB in morphine-sensitized rats: correlations with receptor-evoked electrophysiological measures in the ventral pallidum, Neuropsychopharmacology, 31 (2006), 1212–1226.
- J. McDaid, M. P. Graham, and T. C. Napier, Methamphetamine-induced sensitization differentially alters pCREB and ?FosB throughout the limbic circuit of the mammalian brain, Mol Pharmacol, 70 (2006), 2064–2074.
- C. Mombereau, L. Lhuillier, K. Kaupmann, and J. F. Cryan, GABAB receptor-positive modulation-induced blockade of the rewarding properties of nicotine is associated with a reduction in nucleus accumbens ?FosB accumulation, J Pharmacol Exp Ther, 321 (2007), 172–177.
- R. Moratalla, B. Elibol, M. Vallejo, and A. M. Graybiel, Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal, Neuron, 17 (1996), 147–156.
- J. I. Morgan and T. Curran, Immediate-early genes: ten years on, Trends Neurosci, 18 (1995), 66–67.
- D. L. Muller and E. M. Unterwald, D1 dopamine receptors modulate ?FosB induction in rat striatum after intermittent morphine administration, J Pharmacol Exp Ther, 314 (2005), 148–154.
- J. Muschamp, C. Nemeth, A. Robison, E. Nestler, and W. Carlezon Jr., ?FosB enhances the rewarding effects of cocaine while reducing the pro-depressive effects of the kappa-opioid receptor agonist U50488, Biol Psychiatry, 71 (2012), 44–50.
- Y. Nakabeppu and D. Nathans, A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity, Cell, 64 (1991), 751–759.
- E. J. Nestler, Molecular basis of long-term plasticity underlying addiction, Nat Rev Neurosci, 2 (2001), 119–128.
- E. J. Nestler, Transcriptional mechanisms of addiction: role of ?FosB, Philos Trans R Soc Lond B Biol Sci, 363 (2008), 3245–3255.
- E. J. Nestler, M. B. Kelz, and J. Chen, ?FosB: a molecular mediator of long-term neural and behavioral plasticity, Brain Res, 835 (1999), 10–17.
- S. D. Norrholm, J. A. Bibb, E. J. Nestler, C. C. Ouimet, J. R. Taylor, and P. Greengard, Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5, Neuroscience, 116 (2003), 19–22.
- H. E. Nye, B. Hope, M. Kelz, M. Iadarola, and E. Nestler, Pharmacological studies of the regulation of chronic FOS-related antigen induction by cocaine in the striatum and nucleus accumbens, J Pharmacol Exp Ther, 275 (1995), 1671–1680.
- H. E. Nye and E. J. Nestler, Induction of chronic Fos-related antigens in rat brain by chronic morphine administration, Mol Pharmacol, 49 (1996), 636–645.
- P. Olausson, J. D. Jentsch, N. Tronson, R. L. Neve, E. J. Nestler, and J. R. Taylor, ?FosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation, J Neurosci, 26 (2006), 9196–9204.
- M. C. Peakman, C. Colby, L. I. Perrotti, P. Tekumalla, T. Carle, P. Ulery, et al., Inducible, brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine, Brain Res, 970 (2003), 73–86.
- L. I. Perrotti, C. A. Bolan~os, K. H. Choi, S. J. Russo, S. Edwards, P. G. Ulery, et al., ?FosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment, Eur J Neurosci, 21 (2005), 2817–2824.
- L. I. Perrotti, Y. Hadeishi, P. G. Ulery, M. Barrot, L. Monteggia, R. S. Duman, et al., Induction of ?FosB in reward-related brain structures after chronic stress, J Neurosci, 24 (2004), 10594–10602.
- L. I. Perrotti, R. R. Weaver, B. Robison, W. Renthal, I. Maze, S. Yazdani, et al., Distinct patterns of ?FosB induction in brain by drugs of abuse, Synapse, 62 (2008), 358–369.
- E. M. Pich, S. R. Pagliusi, M. Tessari, D. Talabot-Ayer, R. Hooft van Huijsduijnen, and C. Chiamulera, Common neural substrates for the addictive properties of nicotine and cocaine, Science, 275 (1997), 83–86.
- K. K. Pitchers, K. S. Frohmader, V. Vialou, E. Mouzon, E. J. Nestler, M. N. Lehman, et al., ?FosB in the nucleus accumbens is critical for reinforcing effects of sexual reward, Genes Brain Behav, 9 (2010), 831–840.
- W. Renthal, T. L. Carle, I. Maze, H. E. Covington 3rd, H. T. Truong, I. Alibhai, et al., ?FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure, J Neurosci, 28 (2008), 7344–7349.
- W. Renthal, A. Kumar, G. Xiao, M. Wilkinson, H. E. Covington 3rd, I. Maze, et al., Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins, Neuron, 62 (2009), 335–348.
- W. Renthal, I. Maze, V. Krishnan, H. E. Covington 3rd, G. Xiao, A. Kumar, et al., Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli, Neuron, 56 (2007), 517–529.
- T. E. Robinson and B. Kolb, Structural plasticity associated with exposure to drugs of abuse, Neuropharmacology, 47 (2004), 33–46.
- A. J. Robison and E. J. Nestler, Transcriptional and epigenetic mechanisms of addiction, Nat Rev Neurosci, 12 (2011), 623–637.
- A. J. Robison, V. Vialou, M. Mazei-Robison, J. Feng, S. Kourrich, M. Collins, et al., Behavioral and structural responses to chronic cocaine require a feed-forward loop involving ?FosB and CaMKII in the nucleus accumbens shell, J Neurosci (to appear).
- S. J. Russo, M. B. Wilkinson, M. S. Mazei-Robison, D. M. Dietz, I. Maze, V. Krishnan, et al., Nuclear factor B signaling regulates neuronal morphology and cocaine reward, J Neurosci, 29 (2009), 3529–3537.
- H. J. Shaffer and G. B. Eber, Temporal progression of cocaine dependence symptoms in the US National Comorbidity Survey, Addiction, 97 (2002), 543–554.
- T. Shippenberg and W. Rea, Sensitization to the behavioral effects of cocaine: modulation by dynorphin and kappa-opioid receptor agonists, Pharmacol Biochem Behav, 57 (1997), 449–455.
- J. Taylor, W. Lynch, H. Sanchez, P. Olausson, E. Nestler, and J. Bibb, Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine, Proc Natl Acad Sci U S A, 104 (2007), 4147–4152.
- S. L. Teegarden and T. L. Bale, Decreases in dietary preference produce increased emotionality and risk for dietary relapse, Biol Psychiatry, 61 (2007), 1021–1029.
- S. L. Teegarden, E. J. Nestler, and T. L. Bale, ?FosB-mediated alterations in dopamine signaling are normalized by a palatable high-fat diet, Biol Psychiatry, 64 (2008), 941–950.
- P. G. Ulery, G. Rudenko, and E. J. Nestler, Regulation of ?FosB stability by phosphorylation, J Neurosci, 26 (2006), 5131–5142.
- P. G. Ulery-Reynolds, M. A. Castillo, V. Vialou, S. J. Russo, and E. J. Nestler, Phosphorylation of ?FosB mediates its stability in vivo, Neuroscience, 158 (2009), 369–372.
- V. Vialou, J. Feng, A. J. Robison, S. M. Ku, D. Ferguson, K. N. Scobie, et al., Serum response factor and cAMP response element binding protein are both required for cocaine induction of ?FosB, J Neurosci, 32 (2012), 7577–7584.
- V. Vialou, I. Maze, W. Renthal, Q. C. LaPlant, E. L. Watts, E. Mouzon, et al., Serum response factor promotes resilience to chronic social stress through the induction of ?FosB, J Neurosci, 30 (2010), 14585–14592.
- V. Vialou, A. J. Robison, Q. C. Laplant, H. E. Covington 3rd, D. M. Dietz, Y. N. Ohnishi, et al., ?FosB in brain reward circuits mediates resilience to stress and antidepressant responses, Nat Neurosci, 13 (2010), 745–752.
- D. L. Wallace, V. Vialou, L. Rios, T. L. Carle-Florence, S. Chakravarty, A. Kumar, et al., The influence of ?FosB in the nucleus accumbens on natural reward-related behavior, J Neurosci, 28 (2008), 10272–10277.
- Y. Wang, T. I. Cesena, Y. Ohnishi, R. Burger-Caplan, V. Lam, P. D. Kirchhoff, et al., Small molecule screening identifies regulators of the transcription factor ?FosB, ACS Chem Neurosci, 3 (2012), 546–556.
- M. Werme, C. Messer, L. Olson, L. Gilden, P. Thorén, E. J. Nestler, et al., ?FosB regulates wheel running, J Neurosci, 22 (2002), 8133–8138.
- C. A. Winstanley, R. K. Bachtell, D. E. Theobald, S. Laali, T. A. Green, A. Kumar, et al., Increased impulsivity during withdrawal from cocaine self-administration: role for ?FosB in the orbitofrontal cortex, Cereb Cortex, 19 (2009), 435–444.
- C. A. Winstanley, T. A. Green, D. E. Theobald, W. Renthal, Q. LaPlant, R. J. DiLeone, et al., ?FosB induction in orbitofrontal cortex potentiates locomotor sensitization despite attenuating the cognitive dysfunction caused by cocaine, Pharmacol Biochem Behav, 93 (2009), 278–284.
- C. A. Winstanley, Q. LaPlant, D. E. Theobald, T. A. Green, R. K. Bachtell, L. I. Perrotti, et al., ?FosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction, J Neurosci, 27 (2007), 10497–10507.
- J. Yen, R. M. Wisdom, I. Tratner, and I. M. Verma, An alternative spliced form of FosB is a negative regulator of transcriptional activation and transformation by Fos proteins, Proc Natl Acad Sci U S A, 88 (1991), 5077–5081.
- S. T. Young, L. J. Porrino, and M. J. Iadarola, Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors, Proc Natl Acad Sci U S A, 88 (1991), 1291–1295.
- V. Zachariou, C. A. Bolanos, D. E. Selley, D. Theobald, M. P. Cassidy, M. B. Kelz, et al., An essential role for ?FosB in the nucleus accumbens in morphine action, Nat Neurosci, 9 (2006), 205–211.