Dopamine Genetics and Function in Food and Substance Abuse (2013)

J Genet Syndr Gene Ther. 2013 February 10; 4(121): 1000121. doi:  10.4172/2157-7412.1000121

Abstract

Having entered the genomics era with confidence in the future of medicine, including psychiatry, identifying the role of DNA and polymorphic associations with brain reward circuitry has led to a new understanding of all addictive behaviors. It is noteworthy that this strategy may provide treatment for the millions who are the victims of “Reward Deficiency Syndrome” (RDS) a genetic disorder of brain reward circuitry. This article will focus on drugs and food being mutuality addictive, and the role of dopamine genetics and function in addictions, including the interaction of the dopamine transporter, and sodium food. We will briefly review our concept that concerns the genetic antecedents of multiple–addictions (RDS). Studies have also shown that evaluating a panel of established reward genes and polymorphisms enables the stratification of genetic risk to RDS. The panel is called the “Genetic Addiction Risk Score (GARS)”, and is a tool for the diagnosis of a genetic predisposition for RDS. The use of this test, as pointed out by others, would benefit the medical community by identifying at risk individuals at a very early age. We encourage, in depth work in both animal and human models of addiction. We encourage further exploration of the neurogenetic correlates of the commonalities between food and drug addiction and endorse forward thinking hypotheses like “The Salted Food Addiction Hypothesis”.

Keywords: Food addiction, Substance Use Disorder (SUD), Reward Deficiency Syndrome (RDS), Dopaminergic gene polymorphisms, Neurogenetics

Introduction

Dopamine (DA) is a neurotransmitter in the brain, which controls feelings of wellbeing. This sense of wellbeing results from the interaction of DA and neurotransmitters such as serotonin, the opioids, and other brain chemicals. Low serotonin levels are associated with depression. High levels of the opioids (the brain’s opium) are also associated with a sense of wellbeing [1]. Moreover, DA receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders [2]. DA has been called the “anti-stress” and/or “pleasure” molecule, but this has been recently debated by Salamone and Correa [3] and Sinha [4].

Accordingly, we have argued [58] that Nucleus accumbens (NAc) DA has a role in motivational processes, and that mesolimbic DA dysfunction may contribute to motivational symptoms of depression, features of substance abuse and other disorders [3]. Although it has become traditional to label DA neurons as reward neurons, this is an over generalization, and it is necessary to consider how different aspects of motivation are affected by dopaminergic manipulations. For example, NAc DA is involved in Pavlovian processes, and instrumental learning appetitive-approach behavior, aversive motivation, behavioral activation processes sustained task engagement and exertion of effort although it does not mediate initial hunger, motivation to eat or appetite [3,57].

While it is true that NAc DA is involved in appetitive and aversive motivational processes we argue that DA is also involved as an important mediator in primary food motivation or appetite similar to drugs of abuse. A review of the literature provides a number of papers that show the importance of DA in food craving behavior and appetite mediation [6,7]. Gold has pioneered the concept of food addiction [58]. Avena et al. [9] correctly argue that because addictive drugs avtivate the same neurological pathways that evolved to respond to natural rewards, addiction to food seems plausible. Moreover, sugar per se is noteworthy as a substance that releases opioids and DA and thus might be expected to have addictive potential. Specifically, neural adaptations include changes in DA and opioid receptor binding, enkephalin mRNA expression and DA and acetylcholine release in the NAc. The evidence supports the hypothesis that under certain circumstances rats can become sugar dependent.

The work of Wang et al. [10] involving brain imaging studies in humans has implicated DA-modulated circuits in pathologic eating behavior(s). Their studies suggest that the DA in the extracellular space of the striatum is increased by food cues, this is evidence that DA is potentially involved in the non-hedonic motivational properties of food. They also found that orbitofrontal cortex metabolism is increased by food cues indicating that this region is associated with motivation for the mediation of food consumption. There is an observed reduction in striatal DA D2 receptor availability in obese subjects, similar to the reduction in drug-addicted subjects, thus obese subjects may be predisposed to use food to compensate temporarily for under stimulated reward circuits [11]. In essence, the powerful reinforcing effects of both food and drugs are in part mediated by abrupt DA increases in the mesolimbic brain reward centers. Volkow et al. [11] point out that abrupt DA increases can override homeostatic control mechanisms in the brain’s of vulnerable individuals. Brain imaging studies have deliniated the neurological dysfunction that generates the shared features of food and drug addictions. The cornerstone of the commonality, of the root causes of addiction are impairments in the dopaminergic pathways that regulate the neuronal systems associated also with self-control, conditioning, stress reactivity, reward sensitivity and incentive motivation [11]. Metabolism in prefrontal regions is involved in inhibitory control, in obese subjects the inability to limit food intake involves ghrelin and may be the result of decreased DA D2 receptors which are associated with decreased prefrontal metabolism [12]. The limbic and cortical regions involved with motivation, memory and self-control, are activated by gastric stimulation in obese subjects [10] and during drug craving in drug-addicted subjects. An enhanced sensitivity to the sensory properties of food is suggested by increased metabolism in the somatosensory cortex of obese subjects. This enhanced sensitivity to food palatability coupled with reduced DA D2 receptors could make food the salient reinforcer for compulsive eating and obesity risk [10]. These research results indicate that numerous brain circuits are disrupted in obesity and drug addiction and that the prevention and treatment of obesity may benefit from strategies that target improved DA function.

Lindblom et al. [13] reported that dieting as a strategy to reduce body weight often fails as it causes food cravings leading to binging and weight regain. They also agree that evidence from several lines of research suggests the presence of shared elements in the neural regulation of food and drug craving. Lindblom et al. [13] quantified the expression of eight genes involved in DA signaling in brain regions related to the mesolimbic and nigrostriatal DA system in male rats subjected to chronic food restriction using quantitative real-time polymerase chain reaction. They found that mRNA levels of tyrosine hydroxylase, and the dopamine transporter in the ventral tegmental area were strongly increased by food restriction and concurrent DAT up-regulation at the protein level in the shell of the NAc was also observed via quantitative autoradiography. That these effects were observed after chronic rather than acute food restriction suggests that sensitization of the mesolimbic dopamine pathway may have occurred. Thus, sensitization possibly due to increased clearance of extracellular dopamine from the NAc shell may be one of the underlying causes for the food cravings that hinder dietary compliance. These findings are in agreement with earlier findings by Patterson et al. [14]. They demonstrated that direct intracerebroventricular infusion of insulin results in an increase in mRNA levels for the DA reuptake transporter DAT. In a 24- to 36-hour food deprivation study hybridization was used in situ to assess DAT mRNA levels in food-deprived (hypoinsulinemic) rats. Levels were in the ventral tegmental area/substantia nigra pars compacta significantly decreased suggesting that moderation of striatal DAT function can be effected by nutritional status, fasting and insulin. Ifland et al. [15] advanced the hypothesis that processed foods with high concentrations of sugar and other refined sweeteners, refined carbohydrates, fat, salt, and caffeine are addictive substances. Other studies have evaluated salt as important factor in food seeking behavior. Roitman et al. [16] points out that increased DA transmission in the NAc is correlated with motivated behaviors, including Na appetite. DA transmission is modulated by DAT and may play a role in motivated behaviors. In their studies in vivo, robust decreases in DA uptake via DAT in the rat NAc were correlated with and Na appetite induced by Na depletion. Decreased DAT activity in the NAc was observed after in vitro Aldosterone treatment. Thus, a reduction in DAT activity, in the NAc, may be the consequence of a direct action of Aldosterone and may be a mechanism by which Na depletion induces generation of increased NAc DA transmission during Na appetite. Increased NAc DA may be the motivating property for the Na-depleted rat. Further support for the role of salted food as possible substance (food) of abuse has resulted in the “The Salted Food Addiction Hypothesis” as proposed by Cocores and Gold [17]. In a pilot study, to determine if salted foods act like a mild opiate agonist which drives overeating and weight gain, they found that an opiate dependent group developed a 6.6% increase in weight during opiate withdrawal showing a strong preference for salted food. Based on this and other literature [18] they suggest that Salted Food may be an addictive substance that stimulates opiate and DA receptors in the reward and pleasure center of the brain. Alternately, preference, hunger, urge, and craving for “tasty” salted food may be symptoms of opiate withdrawal and the opiate like effect of salty food. Both salty foods and opiate withdrawal stimulate the Na appetite, result in increased calorie intake, overeating and disease related to obesity.

Brain Dopaminergic Function

Dopamine D2 receptor gene (DRD2)

When synaptic, DA stimulates DA receptors (D1–D5), individuals experience stress reduction and feelings of wellbeing [19]. As mentioned earlier, the mesocorticolimbic dopaminergic pathway mediates reinforcement of both unnatural rewards and natural rewards. Natural drives are reinforced physiological drives such as hunger and reproduction while unnatural rewards involve satisfaction of acquired learned pleasures, hedonic sensations like those derived from drugs, alcohol, gambling and other risk-taking behaviors [8,20,21].

One notable DA gene is the DRD2 gene which is responsible for the synthesis of DA D2 receptors [22]. The allelic form of the DRD2 gene (A1 versus A2) dictates the number of receptors at post-junctional sites and hypodopaminergic function [23,24]. A paucity of DA receptors predisposes individuals to seek any substance or behavior that stimulates the dopaminergic system [2527].

The DRD2 gene and DA have long been associated with reward [28] in spite of controversy [3,4]. Although the Taq1 A1 allele of the DRD2 gene, has been associated with many neuropsychiatric disorders and initially with severe alcoholism, it is also associated with other substance and process addictions, as well as, Tourette’s Syndrome, high novelty seeking behaviors, Attention Deficit Hyperactivity Disorder (ADHD), and in children and adults, with co-morbid antisocial personality disorder symptoms [28].

While this article will focus on drugs and food being mutuality addictive, and the role of DA genetics and function in addictions, for completeness, we will briefly review our concept that concerns the genetic antecedents of multiple–addictions. “Reward Deficiency Syndrome” (RDS) was first described in 1996 as a theoretical genetic predictor of compulsive, addictive and impulsive behaviors with the realization that the DRD2 A1 genetic variant is associated with these behaviors [2932]. RDS involves the pleasure or reward mechanisms that rely on DA. Behaviors or conditions that are the consequence of DA resistance or depletion are manifestations of RDS [30]. An individual’s biochemical reward deficiency can be mild, the result of overindulgence or stress or more severe, the result of a DA deficiency based on genetic makeup. RDS or anti-reward pathways help to explain how certain genetic anomalies can give rise to complex aberrant behavior. There may be a common neurobiology, neuro-circuitry and neuroanatomy, for a number of psychiatric disorders and multiple addictions. It is well known that .drugs of abuse, alcohol, sex, food, gambling and aggressive thrills, indeed, most positive reinforcers, cause activation and neuronal release of brain DA and can decrease negative feelings. Abnormal cravings are linked to low DA function [33]. Here is an example of how complex behaviors can be produced by specific genetic antecedents. A deficiency of, for example, the D2 receptors a consequence of having the A1 variant of the DRD2 gene [34] may predispose individuals to a high risk for cravings that can be satisfied by multiple addictive, impulsive, and compulsive behaviors. This deficiency could be compounded if the individual had another polymorphism in for example the DAT gene that resulted in excessive removal of DA from the synapse. In addition, the use of substances and aborant behaviors also deplete DA. Thus, RDS can be manifest in severe or mild forms that are a consequence a biochemical inability to derive reward from ordinary, everyday activities. Although many genes and polymorphisms predispose individuals to abnormal DA function, carriers of the Taq1 A1 allele of the DRD2 gene lack enough DA receptor sites to achieve adequate DA sensitivity. This DA deficit in the reward site of the brain can results in unhealthy appetites and craving. In essence, they seek substances like alcohol, opiates, cocaine, nicotine, glucose and behaviors; even abnormally aggressive behaviors that are known to activate dopaminergic pathways and cause preferential release of DA at the NAc. There is now evidence that rather than the NAc, the anterior cingulate cortex may be involved in operant, effort-based decision making [3537] and a site of relapse.

Impairment of the DRD2 gene or in other DA receptor genes, such as the DRD1 involved in homeostasis and so called normal brain function, could ultimately lead to neuropsychiatric disorders including aberrant drug and food seeking behavior. Prenatal drug abuse in the pregnant female has been shown to have profound effects of the neurochemical state of offspring. These include ethanol [38]; cannabis [39]; heroin [40]; cocaine [41]; and drug abuse in general [42]. Most recently Novak et al. [43] provided strong evidence showing that abnormal development of striatal neurons are part of the pathology underlying major psychiatric illnesses. The authors identified an underdeveloped gene network (early) in rat that lacks important striatal receptor pathways (signaling). At two postnatal weeks the network is down regulated and replaced by a network of mature genes expressing striatal-specific genes including the DA D1 and D2 receptors and providing these neurons with their functional identity and phenotypic characteristics. Thus, this developmental switch in both the rat and human, has the potential to be a point of susceptibility to disruption of growth by enviromental factors such as an overindulgence in foods, like salt, and drug abuse.

Dopamine transporter (DAT)

The DA transporter (also DA active transporter, DAT, SLC6A3) is a membrane–spanning protein that pumps the neurotransmitter DA out of the synapse back into cytosol from which other known transporters sequester DA and norepinephrine into neuronal vesicles for later storage and subsequent release [44].

The DAT protein is encoded by a gene located on human chromosome 5 it is about 64 kbp long and consists of 15 coding exon. Specifically, the DAT gene (SLC6A3 or DAT1) is localized to chromosome 5p15.3. Moreover, there is a VNTR polymorphism within the 3′ non-coding region of DAT1. A genetic polymorphism in the DAT gene which effects the amount of protein expressed is evidence for an association between and DA related disorders and DAT [45]. It is well established that DAT is the primary mechanism which clears DA from synapses, except in the prefrontal cortex where DA reuptake involves norepinephrine [46,47]. DAT terminates the DA signal by removing the DA from the synaptic cleft and depositing it into surrounding cells. Importantly, several aspects of reward and cognition are functions of DA and DAT facilitates regulation of DA signaling [48].

It is noteworthy that DAT is an integral membrane protein and is considered a symporter and a co-transporter moving DA from the synaptic cleft across the phospholipid cell membrane by coupling its movement to the movement of Na ions down the electrochemical gradient (facilitated diffusion) and into the cell.

Moreover, DAT function requires the sequential binding and co-transport of two Na ions and one chloride ion with the DA substrate. The driving force for DAT-mediated DA reuptake is the ion concentration gradient generated by the plasma membrane Na+/K+ ATPase [49].

Sonders et al. [50] evaluated the role of the widely–accepted model for monoamine transporter function. They found that normal monoamine transporter function requires set rules. For example, Na ions must bind to the extracellular domain of the transporter before DA can bind. Once DA binds, the protein undergoes a conformational change, which allows both Na and DA to unbind on the intracellular side of the membrane. A number of electrophysiological studies have confirmed that DAT transports one molecule of neurotransmitter across the membrane with one or two Na ions like other monoamine transporters. Negatively charged chloride ions are required to prevent a buildup of positive charge. These studies used radioactive-labeled DA and have also shown that the transport rate and direction are totally dependent on the Na gradient [51].

Since it is well known that many drugs of abuse cause the release of neuronal DA [52], DAT may have a role in this effect. Because of the tight coupling of the membrane potential and the Na gradient, activity-induced changes in membrane polarity can dramatically influence transport rates. In addition, the transporter may contribute to DA release when the neuron depolarizes [53]. In essence, as pointed out by Vandenbergh et al. [54] the DAT protein regulates DA -mediated neurotransmission by rapidly accumulating DA that has been released into the synapse.

The DAT membrane topology was initially theoretical, determined based on hydrophobic sequence analysis and similarity to the GABA transporter. The initial prediction of Kilty et al. [55] of a large extracellular loop between the third and fourth of twelve transmembrane domains was confirmed by Vaughan and Kuhar [56] when they used proteases, to digest proteins into smaller fragments, and glycosylation, which occurs only on extracellular loops, to verify most aspects of DAT structure.

DAT has been found in regions of the brain where there is dopaminergic circuitry, these areas include mesocortical, mesolimbic, and nigrostriatal pathways [57]. The nuclei that make up these pathways have distinct patterns of expression. DAT was not detected within any synaptic cleft which suggests that striatal DA reuptake occurs outside of the synaptic active zones after DA has diffused from the synaptic cleft.

Two alleles, the 9 repeat (9R) and 10 repeat (10R) VNTR can increase the risk for RDS behaviors. The presence of the 9R VNTR has associated with alcoholism and Substance Use Disorder. It has been shown to augment transcription of the DAT protein resulting in an enhanced clearance of synaptic DA, resulting in a reduction in DA, and DA activation of postsynaptic neurons [58]. The tandem repeats of the DAT have been associated with reward sensitivity and high risk for Attention Deficit Hyperactivity Disorder (ADHD) in both children and adults [59,60]. The 10-repeat allele has a small but significant association with hyperactivity-impulsivity (HI) symptoms [61].

Mapping Reward Genes and RDS

Support for the impulsive nature of individuals possessing dopaminergic gene variants and other neurotransmitters (e.g. DRD2, DRD3, DRD4, DAT1, COMT, MOA-A, SLC6A4, Mu, GABAB) is derived from a number of important studies illustrating the genetic risk for drug-seeking behaviors based on association and linkage studies implicating these alleles as risk antecedents that have an impact in the mesocorticolimbic system (Table 1). Our laboratory in conjunction with LifeGen, Inc. and Dominion Diagnostics, Inc. is carrying out research involving twelve select centers across the United States to validate the first ever patented genetic test to determine a patient’s genetic risk for RDS called Genetic Addiction risk Score™ (GARS).

Table1 

Candidate Reward Genes and RDS – (A sampling).

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features

  • User friendly/feasible website-translation of your paper to 50 world’s leading languages
  • Audio Version of published paper
  • Digital articles to share and explore

Special features

  • 250 Open Access Journals
  • 20,000 editorial team
  • 21 days rapid review process
  • Quality and quick editorial, review and publication processing
  • Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
  • Sharing Option: Social Networking Enabled
  • Authors, Reviewers and Editors rewarded with online Scientific Credits
  • Better discount for your subsequent articles

Submit your manuscript at: http://www.editorialmanager.com/omicsgroup/

Acknowledgments

The authors appreciate the expert editorial input from Margaret A. Madigan and Paula J. Edge. We appreciate the comments by Eric R. Braverman, Raquel Lohmann, Joan Borsten, B.W Downs, Roger L. Waite, Mary Hauser, John Femino, David E Smith, and Thomas Simpatico. Marlene Oscar-Berman is the recipient of grants from the National Institutes of Health, NIAAA RO1-AA07112 and K05-AA00219 and the Medical Research Service of the US Department of Veterans Affairs. We also acknowledge the case report input Karen Hurley, Executive Director of National Institute of Holistic Addiction studies, North Miami Beach Florida. In-part this article was supported by a grand awarded to Path foundation NY from Life Extension Foundation.

Footnotes

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Kenneth Blum, PhD., holds a number of US and foreign patents related to diagnosis and treatment of RDS, which has been exclusively licensed to LifeGen, Inc. Lederach, PA. Dominion Diagnostics, LLC, North Kingstown, Rhode Island along with LifeGen, Inc., are actively involved in the commercial development of GARS. John Giordano is also a partner in LifeGen, Inc. There are no other conflicts of interest and all authors read & approved the manuscript.

References

1. Blum K, Payne J. Alcohol & the Addictive Brain. Simon & Schuster Free Press; New York and London: 1990. with.
2. Platania CB, Salomone S, Leggio GM, Drago F, Bucolo C. Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One. 2012;7:e44316. [PMC free article] [PubMed]
3. Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–485. [PubMed]
4. Sinha R. Stress and Addiction. In: Brownell Kelly D., Gold Mark S., editors. Food and Addiction: A Comprehensive Handbook. Oxford University Press; New York: 2012. pp. 59–66.
5. Blum K, Werner T, Carnes S, Carnes P, Bowirrat A, et al. Sex, drugs, and rock ‘n’ roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms. J Psychoactive Drugs. 2012;44:38–55. [PubMed]
6. Gold MS. From bedside to bench and back again: a 30-year saga. Physiol Behav. 2011;104:157–161. [PubMed]
7. Blumenthal DM, Gold MS. Relationships between Drugs of Abuse and Eating. In: Brownell Kelly D., Gold Mark S., editors. Food and Addiction: A Comprehensive Handbook. Oxford University Press; New York: 2012. pp. 254–265.
8. Blum K, Gold MS. Neuro-chemical activation of brain reward meso-limbic circuitry is associated with relapse prevention and drug hunger: a hypothesis. Med Hypotheses. 2011;76:576–584. [PubMed]
9. Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32:20–39. [PMC free article] [PubMed]
10. Wang GJ, Volkow ND, Thanos PK, Fowler JS. Imaging of brain dopamine pathways: implications for understanding obesity. J Addict Med. 2009;3:8–18. [PMC free article] [PubMed]
11. Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14:2–18. [PubMed]
12. Skibicka KP, Hansson C, Egecioglu E, Dickson SL. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict Biol. 2012;17:95–107. [PMC free article] [PubMed]
13. Lindblom J, Johansson A, Holmgren A, Grandin E, Nedergård C, et al. Increased mRNA levels of tyrosine hydroxylase and dopamine transporter in the VTA of male rats after chronic food restriction. Eur J Neurosci. 2006;23:180–186. [PubMed]
14. Patterson TA, Brot MD, Zavosh A, Schenk JO, Szot P, et al. Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology. 1998;68:11–20. [PubMed]
15. Ifland JR, Preuss HG, Marcus MT, Rourke KM, Taylor WC, et al. Refined food addiction: a classic substance use disorder. Med Hypotheses. 2009;72:518–526. [PubMed]
16. Roitman MF, Patterson TA, Sakai RR, Bernstein IL, Figlewicz DP. Sodium depletion and aldosterone decrease dopamine transporter activity in nucleus accumbens but not striatum. Am J Physiol. 1999;276:R1339–1345. [PubMed]
17. Cocores JA, Gold MS. The Salted Food Addiction Hypothesis may explain overeating and the obesity epidemic. Med Hypotheses. 2009;73:892–899. [PubMed]
18. Roitman MF, Schafe GE, Thiele TE, Bernstein IL. Dopamine and sodium appetite: antagonists suppress sham drinking of NaCl solutions in the rat. Behav Neurosci. 1997;111:606–611. [PubMed]
19. Koob G, Kreek MJ. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry. 2007;164:1149–1159. [PMC free article] [PubMed]
20. Bruijnzeel AW, Zislis G, Wilson C, Gold MS. Antagonism of CRF receptors prevents the deficit in brain reward function associated with precipitated nicotine withdrawal in rats. Neuropsychopharmacology. 2007;32:955–963. [PubMed]
21. Dackis CA, Gold MS. Psychopathology resulting from substance abuse. In: Gold MS, Slaby AE, editors. Dual Diagnosis in Substance Abuse. Marcel Dekker Inc.; New York: 1991. pp. 205–220.
22. Olsen CM. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology. 2011;61:1109–1122. [PMC free article] [PubMed]
23. Bunzow JR, Van Tol HH, Grandy DK, Albert P, Salon J, et al. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature. 1988;336:783–787. [PubMed]
24. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA. 1990;263:2055–2060. [PubMed]
25. Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry. 1991;48:648–654. [PubMed]
26. Conrad KL, Ford K, Marinelli M, Wolf ME. Dopamine receptor expression and distribution dynamically change in the rat nucleus accumbens after withdrawal from cocaine self-administration. Neuroscience. 2010;169:182–194. [PMC free article] [PubMed]
27. Heber D, Carpenter CL. Addictive genes and the relationship to obesity and inflammation. Mol Neurobiol. 2011;44:160–165. [PMC free article] [PubMed]
28. Noble EP. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet. 2003;116B:103–125. [PubMed]
29. Blum K, Sheridan PJ, Wood RC, Braverman ER, Chen TJ, et al. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J R Soc Med. 1996;89:396–400. [PMC free article] [PubMed]
30. Bowirrat A, Oscar-Berman M. Relationship between dopaminergic neurotransmission, alcoholism, and Reward Deficiency syndrome. Am J Med Genet B Neuropsychiatr Genet. 2005;132B:29–37. [PubMed]
31. Gardner EL. Addiction and brain reward and antireward pathways. Adv Psychosom Med. 2011;30:22–60. [PubMed]
32. Blum K, Gardner E, Oscar-Berman M, Gold M. “Liking” and “wanting” linked to Reward Deficiency Syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Curr Pharm Des. 2012;18:113–118. [PubMed]
33. Blum K, Chen AL, Chen TJ, Braverman ER, Reinking J, et al. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary. Theor Biol Med Model. 2008;5:24. [PMC free article] [PubMed]
34. Bau CH, Almeida S, Hutz MH. The TaqI A1 allele of the dopamine D2 receptor gene and alcoholism in Brazil: association and interaction with stress and harm avoidance on severity prediction. Am J Med Genet. 2000;96:302–306. [PubMed]
35. Nemoda Z, Szekely A, Sasvari-Szekely M. Psychopathological aspects of dopaminergic gene polymorphisms in adolescence and young adulthood. Neurosci Biobehav Rev. 2011;35:1665–1686. [PMC free article] [PubMed]
36. Walton ME, Groves J, Jennings KA, Croxson PL, Sharp T, et al. Comparing the role of the anterior cingulate cortex and 6-hydroxydopamine nucleus accumbens lesions on operant effort-based decision making. Eur J Neurosci. 2009;29:1678–1691. [PMC free article] [PubMed]
37. Chen TJ, Blum K, Mathews D, Fisher L, Schnautz N, et al. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatricgenetic research of complex behavioral disorders. Med Hypotheses. 2005;65:703–707. [PubMed]
38. Rice JP, Suggs LE, Lusk AV, Parker MO, Candelaria-Cook FT, et al. Effects of exposure to moderate levels of ethanol during prenatal brain development on dendritic length, branching, and spine density in the nucleus accumbens and dorsal striatum of adult rats. Alcohol. 2012;46:577–584. [PMC free article] [PubMed]
39. Shabani M, Hosseinmardi N, Haghani M, Shaibani V, Janahmadi M. Maternal exposure to the CB1 cannabinoid agonist WIN 55212-2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience. 2011;172:139–152. [PubMed]
40. Ying W, Jang FF, Teng C, Tai-Zhen H. Apoptosis may involve in prenatally heroin exposed neurobehavioral teratogenicity? Med Hypotheses. 2009;73:976–977. [PubMed]
41. Estelles J, Rodríguez-Arias M, Maldonado C, Aguilar MA, Miñarro J. Gestational exposure to cocaine alters cocaine reward. Behav Pharmacol. 2006;17:509–515. [PubMed]
42. Derauf C, Kekatpure M, Neyzi N, Lester B, Kosofsky B. Neuroimaging of children following prenatal drug exposure. Semin Cell Dev Biol. 2009;20:441–454. [PMC free article] [PubMed]
43. Novak G, Fan T, O’dowd BF, George SR. Striatal development involves a switch in gene expression networks, followed by a myelination event: Implications for neuropsychiatric disease. Synapse. 2013;67:179–188. [PMC free article] [PubMed]
44. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P. The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol. 2001;11:449–455. [PubMed]
45. Inoue-Murayama M, Adachi S, Mishima N, Mitani H, Takenaka O, et al. Variation of variable number of tandem repeat sequences in the 3′-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett. 2002;334:206–210. [PubMed]
46. Morón JA, Brockington A, Wise RA, Rocha BA, Hope BT. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002;22:389–395. [PubMed]
47. Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Männistö PT. Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci. 2007;27:10196–10209. [PubMed]
48. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27. [PubMed]
49. Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci. 2003;4:13–25. [PubMed]
50. Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci. 1997;17:960–974. [PubMed]
51. Wheeler DD, Edwards AM, Chapman BM, Ondo JG. A model of the sodium dependence of dopamine uptake in rat striatal synaptosomes. Neurochem Res. 1993;18:927–936. [PubMed]
52. Di Chiara G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend. 1995;38:95–137. [PubMed]
53. Rodriguez PC, Pereira DB, Borgkvist A, Wong MY, Barnard C, et al. Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. Proc Natl Acad Sci U S A. 2013;110:870–875. [PMC free article] [PubMed]
54. Vandenbergh DJ. Molecular cloning of neurotransmitter transporter genes: beyond coding region of cDNA. Methods Enzymol. 1998;296:498–514. [PubMed]
55. Kilty JE, Lorang D, Amara SG. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science. 1991;254:578–579. [PubMed]
56. Vaughan RA, Kuhar MJ. Dopamine transporter ligand binding domains. Structural and functional properties revealed by limited proteolysis. J Biol Chem. 1996;271:21672–21680. [PubMed]
57. Sasaki T, Ito H, Kimura Y, Arakawa R, Takano H, et al. Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med. 2012;53:1065–1073. [PubMed]
58. Du Y, Nie Y, Li Y, Wan YJ. The association between the SLC6A3 VNTR 9-repeat allele and alcoholism-a meta-analysis. Alcohol Clin Exp Res. 2011;35:1625–1634. [PubMed]
59. Hahn T, Heinzel S, Dresler T, Plichta MM, Renner TJ, et al. Association between reward-related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype. Hum Brain Mapp. 2011;32:1557–1565. [PubMed]
60. Drtilkova I, Sery O, Theiner P, Uhrova A, Zackova M, et al. Clinical and molecular-genetic markers of ADHD in children. Neuro Endocrinol Lett. 2008;29:320–327. [PubMed]
61. Yang B, Chan RC, Jing J, Li T, Sham P, et al. A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:541–550. [PubMed]
62. Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat. 2004;23:540–545. [PubMed]
63. Blum K, Wood RC, Braverman ER, Chen TJ, Sheridan PJ. The D2 dopamine receptor gene as a predictor of compulsive disease: Bayes’ theorem. Funct Neurol. 1995;10:37–44. [PubMed]
64. Hoffman EK, Hill SY, Zezza N, Thalamuthu A, Weeks DE, et al. Dopaminergic mutations: within-family association and linkage in multiplex alcohol dependence families. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:517–526. [PMC free article] [PubMed]
65. Dahlgren A, Wargelius HL, Berglund KJ, Fahlke C, Blennow K, et al. Do alcohol-dependent individuals with DRD2 A1 allele have an increased risk of relapse? A pilot study. Alcohol Alcohol. 2011;46:509–513. [PubMed]
66. Kraschewski A, Reese J, Anghelescu I, Winterer G, Schmidt LG, et al. Association of the dopamine D2 receptor gene with alcohol dependence: haplotypes and subgroups of alcoholics as key factors for understanding receptor function. Pharmacogenet Genomics. 2009;19:513–527. [PubMed]
67. Teh LK, Izuddin AF, M H FH, Zakaria ZA, Salleh MZ. Tridimensional personalities and polymorphism of dopamine D2 receptor among heroin addicts. Biol Res Nurs. 2012;14:188–196. [PubMed]
68. Van Tol HH. Structural and functional characteristics of the dopamine D4 receptor. Adv Pharmacol. 1998;42:486–490. [PubMed]
69. Lai JH, Zhu YS, Huo ZH, Sun RF, Yu B, et al. Association study of polymorphisms in the promoter region of DRD4 with schizophrenia, depression, and heroin addiction. Brain Res. 2010;1359:227–232. [PubMed]
70. Biederman J, Petty CR, Ten Haagen KS, Small J, Doyle AE, et al. Effect of candidate gene polymorphisms on the course of attention deficit hyperactivity disorder. Psychiatry Res. 2009;170:199–203. [PubMed]
71. Faraone SV, Doyle AE, Mick E, Biederman J. Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry. 2001;158:1052–1057. [PubMed]
72. Grzywacz A, Kucharska-Mazur J, Samochowiec J. Association studies of dopamine D4 receptor gene exon 3 in patients with alcohol dependence. Psychiatr Pol. 2008;42:453–461. [PubMed]
73. Kotler M, Cohen H, Segman R, Gritsenko I, Nemanov L, et al. Excess dopamine D4 receptor (D4DR) exon III seven repeat allele in opioid-dependent subjects. Mol Psychiatry. 1997;2:251–254. [PubMed]
74. Byerley W, Hoff M, Holik J, Caron MG, Giros B. VNTR polymorphism for the human dopamine transporter gene (DAT1) Hum Mol Genet. 1993;2:335. [PubMed]
75. Galeeva AR, Gareeva AE, Iur’ev EB, Khusnutdinova EK. VNTR polymorphisms of the serotonin transporter and dopamine transporter genes in male opiate addicts. Mol Biol (Mosk) 2002;36:593–598. [PubMed]
76. Reese J, Kraschewski A, Anghelescu I, Winterer G, Schmidt LG, et al. Haplotypes of dopamine and serotonin transporter genes are associated with antisocial personality disorder in alcoholics. Psychiatr Genet. 2010;20:140–152. [PubMed]
77. Cook EH, Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995;56:993–998. [PMC free article] [PubMed]
78. Lee SS, Lahey BB, Waldman I, Van Hulle CA, Rathouz P, et al. Association of dopamine transporter genotype with disruptive behavior disorders in an eight-year longitudinal study of children and adolescents. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:310–317. [PubMed]
79. Schellekens AF, Franke B, Ellenbroek B, Cools A, de Jong CA, et al. Reduced dopamine receptor sensitivity as an intermediate phenotype in alcohol dependence and the role of the COMT Val158Met and DRD2 Taq1A genotypes. Arch Gen Psychiatry. 2012;69:339–348. [PubMed]
80. Nedic G, Nikolac M, Sviglin KN, Muck-Seler D, Borovecki F, et al. Association study of a functional catechol-O-methyltransferase (COMT) Val108/158Met polymorphism and suicide attempts in patients with alcohol dependence. Int J Neuropsychopharmacol. 2011;14:377–388. [PubMed]
81. Demetrovics Z, Varga G, Szekely A, Vereczkei A, Csorba J, et al. Association between Novelty Seeking of opiate-dependent patients and the catechol-O-methyltransferase Val(158)Met polymorphism. Compr Psychiatry. 2010;51:510–515. [PubMed]
82. Baransel Isir AB, Oguzkan S, Nacak M, Gorucu S, Dulger HE, et al. The catechol-O-methyl transferase Val158Met polymorphism and susceptibility to cannabis dependence. Am J Forensic Med Pathol. 2008;29:320–322. [PubMed]
83. Merenäkk L, Mäestu J, Nordquist N, Parik J, Oreland L, et al. Effects of the serotonin transporter (5-HTTLPR) and α2A-adrenoceptor (C-1291G) genotypes on substance use in children and adolescents: a longitudinal study. Psychopharmacology (Berl) 2011;215:13–22. [PubMed]
84. van der Zwaluw CS, Engels RC, Vermulst AA, Rose RJ, Verkes RJ, et al. A serotonin transporter polymorphism (5-HTTLPR) predicts the development of adolescent alcohol use. Drug Alcohol Depend. 2010;112:134–139. [PubMed]
85. Kosek E, Jensen KB, Lonsdorf TB, Schalling M, Ingvar M. Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans. Mol Pain. 2009;5:37. [PMC free article] [PubMed]
86. Ray R, Ruparel K, Newberg A, Wileyto EP, Loughead JW, et al. Human Mu Opioid Receptor (OPRM1 A118G) polymorphism is associated with brain mu-opioid receptor binding potential in smokers. Proc Natl Acad Sci U S A. 2011;108:9268–9273. [PMC free article] [PubMed]
87. Szeto CY, Tang NL, Lee DT, Stadlin A. Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport. 2001;12:1103–1106. [PubMed]
88. Bart G, Kreek MJ, Ott J, LaForge KS, Proudnikov D, et al. Increased attributable risk related to a functional mu-opioid receptor gene polymorphism in association with alcohol dependence in central Sweden. Neuropsychopharmacology. 2005;30:417–422. [PubMed]
89. Hall FS, Sora I, Uhl GR. Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl) 2001;154:43–49. [PubMed]
90. Namkoong K, Cheon KA, Kim JW, Jun JY, Lee JY. Association study of dopamine D2, D4 receptor gene, GABAA receptor beta subunit gene, serotonin transporter gene polymorphism with children of alcoholics in Korea: a preliminary study. Alcohol. 2008;42:77–81. [PubMed]
91. Mhatre M, Ticku MK. Chronic ethanol treatment upregulates the GABA receptor beta subunit expression. Brain Res Mol Brain Res. 1994;23:246–252. [PubMed]
92. Young RM, Lawford BR, Feeney GF, Ritchie T, Noble EP. Alcohol-related expectancies are associated with the D2 dopamine receptor and GABAA receptor beta3 subunit genes. Psychiatry Res. 2004;127:171–183. [PubMed]
93. Feusner J, Ritchie T, Lawford B, Young RM, Kann B, et al. GABA(A) receptor beta 3 subunit gene and psychiatric morbidity in a post-traumatic stress disorder population. Psychiatry Res. 2001;104:109–117. [PubMed]
94. Noble EP, Zhang X, Ritchie T, Lawford BR, Grosser SC, et al. D2 dopamine receptor and GABA(A) receptor beta3 subunit genes and alcoholism. Psychiatry Res. 1998;81:133–147. [PubMed]
95. Nikulina V, Widom CS, Brzustowicz LM. Child abuse and neglect, MAOA, and mental health outcomes: a prospective examination. Biol Psychiatry. 2012;71:350–357. [PMC free article] [PubMed]
96. Alia-Klein N, Parvaz MA, Woicik PA, Konova AB, Maloney T, et al. Gene × disease interaction on orbitofrontal gray matter in cocaine addiction. Arch Gen Psychiatry. 2011;68:283–294. [PMC free article] [PubMed]
97. Nilsson KW, Comasco E, Åslund C, Nordquist N, Leppert J, et al. MAOA genotype, family relations and sexual abuse in relation to adolescent alcohol consumption. Addict Biol. 2011;16:347–355. [PubMed]
98. Treister R, Pud D, Ebstein RP, Laiba E, Gershon E, et al. Associations between polymorphisms in dopamine neurotransmitter pathway genes and pain response in healthy humans. Pain. 2009;147:187–193. [PubMed]
99. Tikkanen R, Auvinen-Lintunen L, Ducci F, Sjöberg RL, Goldman D, et al. Psychopathy, PCL-R, and MAOA genotype as predictors of violent reconvictions. Psychiatry Res. 2011;185:382–386. [PMC free article] [PubMed]
100. Gokturk C, Schultze S, Nilsson KW, von Knorring L, Oreland L, et al. Serotonin transporter (5-HTTLPR) and monoamine oxidase (MAOA) promoter polymorphisms in women with severe alcoholism. Arch Womens Ment Health. 2008;11:347–355. [PubMed]
101. Contini V, Marques FZ, Garcia CE, Hutz MH, Bau CH. MAOA-uVNTR polymorphism in a Brazilian sample: further support for the association with impulsive behaviors and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:305–308. [PubMed]
102. Lee SY, Chen SL, Chen SH, Chu CH, Chang YH, et al. Interaction of the DRD3 and BDNF gene variants in subtyped bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39:382–387. [PubMed]
103. Li T, Hou Y, Cao W, Yan CX, Chen T, et al. Role of dopamine D3 receptors in basal nociception regulation and in morphine-induced tolerance and withdrawal. Brain Res. 2012;1433:80–84. [PubMed]
104. Vengeliene V, Leonardi-Essmann F, Perreau-Lenz S, Gebicke-Haerter P, Drescher K, et al. The dopamine D3 receptor plays an essential role in alcohol-seeking and relapse. FASEB J. 2006;20:2223–2233. [PubMed]
105. Mulert C, Juckel G, Giegling I, Pogarell O, Leicht G, et al. A Ser9Gly polymorphism in the dopamine D3 receptor gene (DRD3) and event-related P300 potentials. Neuropsychopharmacology. 2006;31:1335–1344. [PubMed]
106. Limosin F, Romo L, Batel P, Adès J, Boni C, et al. Association between dopamine receptor D3 gene BalI polymorphism and cognitive impulsiveness in alcohol-dependent men. Eur Psychiatry. 2005;20:304–306. [PubMed]
107. Duaux E, Gorwood P, Griffon N, Bourdel MC, Sautel F, et al. Homozygosity at the dopamine D3 receptor gene is associated with opiate dependence. Mol Psychiatry. 1998;3:333–336. [PubMed]
108. Spangler R, Wittkowski KM, Goddard NL, Avena NM, Hoebel BG, et al. Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Brain Res Mol Brain Res. 2004;124:134–142. [PubMed]
109. Comings DE, Gonzalez N, Wu S, Saucier G, Johnson P, et al. Homozygosity at the dopamine DRD3 receptor gene in cocaine dependence. Mol Psychiatry. 1999;4:484–487. [PubMed]