December 2015, Volume 9, Issue 4, pp 703–716
- Claudio Imperatori Email author
- Mariantonietta Fabbricatore
- Marco Innamorati
- Benedetto Farina
- Maria Isabella Quintiliani
- Dorian A. Lamis
- Edoardo Mazzucchi
- Anna Contardi
- Catello Vollono
- Giacomo Della Marca
DOI: 10.1007/s11682-014-9324-x
Cite this article as:
Imperatori, C., Fabbricatore, M., Innamorati, M. et al. Brain Imaging and Behavior (2015) 9: 703. doi:10.1007/s11682-014-9324-x
Abstract
We evaluated the modifications of electroencephalographic (EEG) power spectra and EEG connectivity in overweight and obese patients with elevated food addiction (FA) symptoms. Fourteen overweight and obese patients (3 men and 11 women) with three or more FA symptoms and fourteen overweight and obese patients (3 men and 11 women) with two or less FA symptoms were included in the study. EEG was recorded during three different conditions: 1) five minutes resting state (RS), 2) five minutes resting state after a single taste of a chocolate milkshake (ML-RS), and 3) five minutes resting state after a single taste of control neutral solution (N-RS). EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Significant modification was observed only in the ML-RS condition. Compared to controls, patients with three or more FA symptoms showed an increase of delta power in the right middle frontal gyrus (Brodmann Area [BA] 8) and in the right precentral gyrus (BA 9), and theta power in the right insula (BA 13) and in the right inferior frontal gyrus (BA 47). Furthermore, compared to controls, patients with three or more FA symptoms showed an increase of functional connectivity in fronto-parietal areas in both the theta and alpha band. The increase of functional connectivity was also positively associated with the number of FA symptoms. Taken together, our results show that FA has similar neurophysiological correlates of other forms of substance-related and addictive disorders suggesting similar psychopathological mechanisms.
Keywords
Food addictionObesityOverweightFunctional connectivityEEG power spectraeLORETA
References
- American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders – DSMIV -TR (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
- Andrade, J., May, J., & Kavanagh, D. J. (2012). Sensory imagery in craving: from cognitive psychology to new treatments for addiction. Journal of Experimental Psychopathology, 3(2), 127–145.CrossRefGoogle Scholar
- Avena, N. M. (2011). Food and addiction: implications and relevance to eating disorders and obesity. Current Drug Abuse Reviews, 4(3), 131–132.PubMedCrossRefGoogle Scholar
- Balconi, M. (2011). Frontal brain oscillation modulation in facial emotion comprehension. The role of reward and inhibitory systems in subliminal and supraliminal processing. European Journal of Cognitive Psychology, 23(6), 723–735.CrossRefGoogle Scholar
- Bjelland, I., Dahl, A. A., Haug, T. T., & Neckelmann, D. (2002). The validity of the hospital anxiety and depression scale. An updated literature review. Journal of Psychosomatic Research, 52(2), 69–77.PubMedCrossRefGoogle Scholar
- Black, W. R., Lepping, R. J., Bruce, A. S., Powell, J. N., Bruce, J. M., Martin, L. E., & Simmons, W. K. (2014). Tonic hyper-connectivity of reward neurocircuitry in obese children. Obesity (Silver Spring), 22(7), 1590–1593.CrossRefGoogle Scholar
- Bullins, J., Laurienti, P. J., Morgan, A. R., Norris, J., Paolini, B. M., & Rejeski, W. J. (2013). Drive for consumption, craving, and connectivity in the visual cortex during the imagery of desired food. Frontiers in Aging Neuroscience, 5, 77. doi:10.3389/fnagi.2013.00077.PubMedCentralPubMedCrossRefGoogle Scholar
- Burmeister, J. M., Hinman, N., Koball, A., Hoffmann, D. A., & Carels, R. A. (2013). Food addiction in adults seeking weight loss treatment. Implications for psychosocial health and weight loss. Appetite, 60(1), 103–110.PubMedCrossRefGoogle Scholar
- Cabeza, R., & St Jacques, P. (2007). Functional neuroimaging of autobiographical memory. Trends in Cognitive Sciences, 11(5), 219–227.PubMedCrossRefGoogle Scholar
- Cannon, R., Kerson, C., & Hampshire, A. (2011). SLORETA and fMRI detection of medial prefrontal default network anomalies in adult ADHD. Journal of Neurotherapy, 15(4), 358–373.CrossRefGoogle Scholar
- Canuet, L., Ishii, R., Pascual-Marqui, R. D., Iwase, M., Kurimoto, R., Aoki, Y., & Takeda, M. (2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PloS One, 6(11), e27863. doi:10.1371/journal.pone.0027863.PubMedCentralPubMedCrossRefGoogle Scholar
- Canuet, L., Tellado, I., Couceiro, V., Fraile, C., Fernandez-Novoa, L., Ishii, R., & Cacabelos, R. (2012). Resting-state network disruption and APOE genotype in Alzheimer′s disease: a lagged functional connectivity study. PloS One, 7(9), e46289. doi:10.1371/journal.pone.0046289.PubMedCentralPubMedCrossRefGoogle Scholar
- Cepeda-Benito, A., Gleaves, D. H., Fernandez, M. C., Vila, J., Williams, T. L., & Reynoso, J. (2000). The development and validation of Spanish versions of the State and Trait Food Cravings Questionnaires. Behaviour Research and Therapy, 38(11), 1125–1138.PubMedCrossRefGoogle Scholar
- Costantini, M., Musso, M., Viterbori, P., Bonci, F., Del Mastro, L., Garrone, O., & Morasso, G. (1999). Detecting psychological distress in cancer patients: validity of the Italian version of the Hospital Anxiety and Depression Scale. Supportive Care in Cancer, 7(3), 121–127.PubMedCrossRefGoogle Scholar
- Coullaut-Valera, R., Arbaiza, I., Bajo, R., Arrue, R., Lopez, M. E., Coullaut-Valera, J., & Papo, D. (2014). Drug polyconsumption is associated with increased synchronization of brain electrical-activity at rest and in a counting task. International Journal of Neural Systems, 24(1), 1450005. doi:10.1142/S0129065714500051.PubMedCrossRefGoogle Scholar
- Crews, F. T., & Boettiger, C. A. (2009). Impulsivity, frontal lobes and risk for addiction. Pharmacology Biochemistry and Behavior, 93(3), 237–247.CrossRefGoogle Scholar
- Davis, C., & Carter, J. C. (2009). Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite, 53(1), 1–8.PubMedCrossRefGoogle Scholar
- De Ridder, D., Vanneste, S., Kovacs, S., Sunaert, S., & Dom, G. (2011). Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study. Neuroscience Letters, 496(1), 5–10.PubMedCrossRefGoogle Scholar
- Dehghani-Arani, F., Rostami, R., & Nadali, H. (2013). Neurofeedback training for opiate addiction: improvement of mental health and craving. Applied Psychophysiology and Biofeedback, 38(2), 133–141.PubMedCentralPubMedCrossRefGoogle Scholar
- Dong, D., Lei, X., Jackson, T., Wang, Y., Su, Y., & Chen, H. (2014). Altered regional homogeneity and efficient response inhibition in restrained eaters. Neuroscience, 266, 116–126. doi:10.1016/j.neuroscience.2014.01.062.PubMedCrossRefGoogle Scholar
- Dumpelmann, M., Ball, T., & Schulze-Bonhage, A. (2012). sLORETA allows reliable distributed source reconstruction based on subdural strip and grid recordings. Human Brain Mapping, 33(5), 1172–1188.PubMedCrossRefGoogle Scholar
- Fingelkurts, A. A., & Kahkonen, S. (2005). Functional connectivity in the brain–is it an elusive concept? Neuroscience & Biobehavioral Reviews, 28(8), 827–836.CrossRefGoogle Scholar
- Fingelkurts, A. A., Kivisaari, R., Autti, T., Borisov, S., Puuskari, V., Jokela, O., & Kahkonen, S. (2006). Increased local and decreased remote functional connectivity at EEG alpha and beta frequency bands in opioid-dependent patients. Psychopharmacology, 188(1), 42–52.PubMedCrossRefGoogle Scholar
- Fingelkurts, A. A., Kivisaari, R., Autti, T., Borisov, S., Puuskari, V., Jokela, O., & Kahkonen, S. (2007). Opioid withdrawal results in an increased local and remote functional connectivity at EEG alpha and beta frequency bands. Neuroscience Research, 58(1), 40–49.PubMedCrossRefGoogle Scholar
- Ford, M. R., Goethe, J. W., & Dekker, D. K. (1986). EEG coherence and power in the discrimination of psychiatric disorders and medication effects. Biological Psychiatry, 21(12), 1175–1188.PubMedCrossRefGoogle Scholar
- Fortuna, J. L. (2012). The obesity epidemic and food addiction: clinical similarities to drug dependence. Journal of Psychoactive Drugs, 44(1), 56–63.PubMedCrossRefGoogle Scholar
- Franken, I. H., Stam, C. J., Hendriks, V. M., & van den Brink, W. (2004). Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients. Neuropsychobiology, 49(2), 105–110.PubMedCrossRefGoogle Scholar
- Freeman, W. J., Kozma, R., & Werbos, P. J. (2001). Biocomplexity: adaptive behavior in complex stochastic dynamical systems. BioSystems, 59(2), 109–123.PubMedCrossRefGoogle Scholar
- Friston, K. J. (2001). Brain function, nonlinear coupling, and neuronal transients. The Neuroscientist, 7(5), 406–418.PubMedCrossRefGoogle Scholar
- Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1991). Comparing functional (PET) images: the assessment of significant change. Journal of Cerebral Blood Flow & Metabolism, 11(4), 690–699.CrossRefGoogle Scholar
- Fu, Y., Chen, Y., Zeng, T., Peng, Y., Tian, S., & Ma, Y. (2008). Delta EEG activity in left orbitofrontal cortex in rats related to food reward and craving. Zoological Research, 29(3), 260–264.CrossRefGoogle Scholar
- Garcia-Garcia, I., Jurado, M. A., Garolera, M., Segura, B., Marques-Iturria, I., Pueyo, R., & Junque, C. (2012). Functional connectivity in obesity during reward processing. NeuroImage, 66C, 232–239.Google Scholar
- Gearhardt, A. N., Corbin, W. R., & Brownell, K. D. (2009a). Food addiction: an examination of the diagnostic criteria for dependence. Journal of Addictions Nursing, 3(1), 1–7.Google Scholar
- Gearhardt, A. N., Corbin, W. R., & Brownell, K. D. (2009b). Preliminary validation of the Yale food addiction scale. Appetite, 52(2), 430–436.PubMedCrossRefGoogle Scholar
- Gearhardt, A. N., Yokum, S., Orr, P. T., Stice, E., Corbin, W. R., & Brownell, K. D. (2011). Neural correlates of food addiction. Archives of General Psychiatry, 68(8), 808–816.PubMedCentralPubMedCrossRefGoogle Scholar
- Grave de Peralta-Menendez, R., & Gonzalez-Andino, S. L. (1998). A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Transactions on Biomedical Engineering, 45(4), 440–448.PubMedCrossRefGoogle Scholar
- de Peralta, G., Menendez, R., Gonzalez Andino, S. L., Morand, S., Michel, C. M., & Landis, T. (2000). Imaging the electrical activity of the brain: ELECTRA. Human Brain Mapping, 9(1), 1–12.CrossRefGoogle Scholar
- Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., & Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 5, 25. doi:10.1186/1743-0003-5-25.PubMedCentralPubMedCrossRefGoogle Scholar
- Guntekin, B., & Basar, E. (2007). Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology, 64(1), 91–100.PubMedCrossRefGoogle Scholar
- Hong, S. B., Zalesky, A., Cocchi, L., Fornito, A., Choi, E. J., Kim, H. H., & Yi, S. H. (2013). Decreased functional brain connectivity in adolescents with internet addiction. PloS One, 8(2), e57831. doi:10.1371/journal.pone.0057831.PubMedCentralPubMedCrossRefGoogle Scholar
- Horacek, J., Brunovsky, M., Novak, T., Skrdlantova, L., Klirova, M., Bubenikova-Valesova, V., & Hoschl, C. (2007). Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations. Neuropsychobiology, 55(3–4), 132–142.PubMedCrossRefGoogle Scholar
- Iani, L., Lauriola, M., & Costantini, M. (2014). A confirmatory bifactor analysis of the hospital anxiety and depression scale in an Italian community sample. Health and Quality of Life Outcomes, 12, 84. doi:10.1186/1477-7525-12-84.PubMedCentralPubMedCrossRefGoogle Scholar
- Imperatori, C., Farina, B., Brunetti, R., Gnoni, V., Testani, E., Quintiliani, M. I., & Della Marca, G. (2013). Modifications of EEG power spectra in mesial temporal lobe during n-back tasks of increasing difficulty. A sLORETA study. Frontiers in Human Neuroscience, 7, 109. doi:10.3389/fnhum.2013.00109.PubMedCentralPubMedCrossRefGoogle Scholar
- Imperatori, C., Farina, B., Quintiliani, M. I., Onofri, A., Castelli Gattinara, P., Lepore, M., & Della Marca, G. (2014a). Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: A sLORETA study. Biological Psychology, 102, 10–16. doi:10.1016/j.biopsycho.2014.07.011.PubMedCrossRefGoogle Scholar
- Imperatori, C., Innamorati, M., Contardi, A., Continisio, M., Tamburello, S., Lamis, D. A., & Fabbricatore, M. (2014b). The association among food addiction, binge eating severity and psychopathology in obese and overweight patients attending low-energy-diet therapy. Comprehensive Psychiatry, 55(6), 1358–1362.PubMedCrossRefGoogle Scholar
- Innamorati, M., Imperatori, C., Manzoni, G. M., Lamis, D. A., Castelnuovo, G., Tamburello, A., & Fabbricatore, M. (2014a). Psychometric properties of the Italian Yale Food Addiction Scale in overweight and obese patients. Eating and Weight Disorders. doi:10.1007/s40519-014-0142-3.Google Scholar
- Innamorati, M., Imperatori, C., Meule, A., Lamis, D. A., Contardi, A., Balsamo, M., & Fabbricatore, M. (2014b). Psychometric properties of the Italian Food Cravings Questionnaire-Trait-reduced (FCQ-T-r). Eating and Weight Disorders. doi:10.1007/s40519-014-0143-2.Google Scholar
- Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877–882.PubMedCrossRefGoogle Scholar
- Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395–1399.PubMedCrossRefGoogle Scholar
- Kavanagh, D. J., Andrade, J., & May, J. (2005). Imaginary relish and exquisite torture: the elaborated intrusion theory of desire. Psychological Review, 112(2), 446–467.PubMedCrossRefGoogle Scholar
- Kemps, E., Tiggemann, M., & Grigg, M. (2008). Food cravings consume limited cognitive resources. Journal of Experimental Psychology Applied, 14(3), 247–254.PubMedCrossRefGoogle Scholar
- Kemps, E., Tiggemann, M., Woods, D., & Soekov, B. (2004). Reduction of food cravings through concurrent visuospatial processing. International Journal of Eating Disorders, 36(1), 31–40.PubMedCrossRefGoogle Scholar
- Khader, P. H., Jost, K., Ranganath, C., & Rosler, F. (2010). Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. Neuroscience Letters, 468(3), 339–343.PubMedCentralPubMedCrossRefGoogle Scholar
- Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88.PubMedCrossRefGoogle Scholar
- Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews, 31(3), 377–395.CrossRefGoogle Scholar
- Knyazev, G. G. (2012). EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neuroscience & Biobehavioral Reviews, 36(1), 677–695.CrossRefGoogle Scholar
- Koehler, S., Ovadia-Caro, S., van der Meer, E., Villringer, A., Heinz, A., Romanczuk-Seiferth, N., & Margulies, D. S. (2013). Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PloS One, 8(12), e84565. doi:10.1371/journal.pone.0084565.PubMedCentralPubMedCrossRefGoogle Scholar
- Krause, C. M., Viemero, V., Rosenqvist, A., Sillanmaki, L., & Astrom, T. (2000). Relative electroencephalographic desynchronization and synchronization in humans to emotional film content: an analysis of the 4–6, 6–8, 8–10 and 10–12 Hz frequency bands. Neuroscience Letters, 286(1), 9–12.PubMedCrossRefGoogle Scholar
- Kreiter, A. K., & Singer, W. (1992). Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. European Journal of Neuroscience, 4(4), 369–375.PubMedCrossRefGoogle Scholar
- Kroes, M. C., van Wingen, G. A., Wittwer, J., Mohajeri, M. H., Kloek, J., & Fernandez, G. (2014). Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism. NeuroImage, 84, 825–832. doi:10.1016/j.neuroimage.2013.09.041.PubMedCrossRefGoogle Scholar
- Kullmann, S., Pape, A. A., Heni, M., Ketterer, C., Schick, F., Haring, H. U., & Veit, R. (2013). Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cerebral Cortex, 23(5), 1247–1256.PubMedCrossRefGoogle Scholar
- Ma, L., Steinberg, J. L., Hasan, K. M., Narayana, P. A., Kramer, L. A., & Moeller, F. G. (2012). Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling. Human Brain Mapping, 33(8), 1850–1867.PubMedCentralPubMedCrossRefGoogle Scholar
- Markov, N. T., Ercsey-Ravasz, M., Van Essen, D. C., Knoblauch, K., Toroczkai, Z., & Kennedy, H. (2013). Cortical high-density counterstream architectures. Science, 342(6158), 1238406. doi:10.1126/science.1238406.PubMedCentralPubMedCrossRefGoogle Scholar
- May, J., Andrade, J., Kavanagh, D. J., & Hetherington, M. (2012). Elaborated Intrusion theory: A cognitive-emotional theory of food craving. Current Obesity Reports, 1(2), 114–121.CrossRefGoogle Scholar
- Meule, A., Kubler, A., & Blechert, J. (2013). Time course of electrocortical food-cue responses during cognitive regulation of craving. Frontiers in Psychology, 4, 669. doi:10.3389/fpsyg.2013.00669.PubMedCentralPubMedGoogle Scholar
- Murphy, C. M., Stojek, M. K., & MacKillop, J. (2014). Interrelationships among impulsive personality traits, food addiction, and Body Mass Index. Appetite, 73, 45–50. doi:10.1016/j.appet.2013.10.008.PubMedCrossRefGoogle Scholar
- Murphy, T. H., Blatter, L. A., Wier, W. G., & Baraban, J. M. (1992). Spontaneous synchronous synaptic calcium transients in cultured cortical neurons. The Journal of Neuroscience, 12(12), 4834–4845.PubMedGoogle Scholar
- Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function, 214(5–6), 435–450.PubMedCentralPubMedCrossRefGoogle Scholar
- Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15(1), 1–25.PubMedCrossRefGoogle Scholar
- Olsson, I., Mykletun, A., & Dahl, A. A. (2005). The hospital anxiety and depression rating scale: a cross-sectional study of psychometrics and case finding abilities in general practice. BMC Psychiatry, 5, 46. doi:10.1186/1471-244X-5-46.PubMedCentralPubMedCrossRefGoogle Scholar
- Pagani, M., Di Lorenzo, G., Verardo, A. R., Nicolais, G., Monaco, L., Lauretti, G., & Siracusano, A. (2012). Neurobiological correlates of EMDR monitoring – an EEG study. PloS One, 7(9), e45753. doi:10.1371/journal.pone.0045753.PubMedCentralPubMedCrossRefGoogle Scholar
- Park, H. J., & Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science, 342(6158), 1238411. doi:10.1126/science.1238411.PubMedCrossRefGoogle Scholar
- Parvaz, M. A., Alia-Klein, N., Woicik, P. A., Volkow, N. D., & Goldstein, R. Z. (2011). Neuroimaging for drug addiction and related behaviors. Reviews in the Neurosciences, 22(6), 609–624.PubMedCentralPubMedCrossRefGoogle Scholar
- Pascual-Marqui, R. D. (2007). Coherence and phase synchronization: generalization to pairs of multivariate time series, and removal of zero-lag contributions. arXiv:0706.1776v3 [stat. ME] 12 July 2007. (http://arxiv.org/pdf/0706.1776).
- Pascual-Marqui, R. D., & Biscay-Lirio, R. (1993). Spatial resolution of neuronal generators based on EEG and MEG measurements. International Journal of Neuroscience, 68(1–2), 93–105.PubMedCrossRefGoogle Scholar
- Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B., & Kinoshita, T. (2011). Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 369(1952), 3768–3784.CrossRefGoogle Scholar
- Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65.PubMedCrossRefGoogle Scholar
- Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Transactions on Biomedical Engineering, 42(7), 658–665.PubMedCrossRefGoogle Scholar
- Pelchat, M. L. (2009). Food addiction in humans. Journal of Nutrition, 139(3), 620–622.PubMedCrossRefGoogle Scholar
- Pelchat, M. L., Johnson, A., Chan, R., Valdez, J., & Ragland, J. D. (2004). Images of desire: food-craving activation during fMRI. NeuroImage, 23(4), 1486–1493.PubMedCrossRefGoogle Scholar
- Pompili, M., Innamorati, M., Szanto, K., Di Vittorio, C., Conwell, Y., Lester, D., & Amore, M. (2011). Life events as precipitants of suicide attempts among first-time suicide attempters, repeaters, and non-attempters. Psychiatry Research, 186(2–3), 300–305.PubMedCrossRefGoogle Scholar
- Reid, M. S., Flammino, F., Howard, B., Nilsen, D., & Prichep, L. S. (2006). Topographic imaging of quantitative EEG in response to smoked cocaine self-administration in humans. Neuropsychopharmacology, 31(4), 872–884.PubMedCrossRefGoogle Scholar
- Reid, M. S., Prichep, L. S., Ciplet, D., O’Leary, S., Tom, M., Howard, B., & John, E. R. (2003). Quantitative electroencephalographic studies of cue-induced cocaine craving. Electroencephalography and Clinical Neurophysiology, 34(3), 110–123.Google Scholar
- Ross, S. M. (2013). Neurofeedback: an integrative treatment of substance use disorders. Holistic Nursing Practice, 27(4), 246–250.PubMedCrossRefGoogle Scholar
- Saunders, B. T., & Robinson, T. E. (2013). Individual variation in resisting temptation: implications for addiction. Neuroscience & Biobehavioral Reviews, 37(9 Pt A), 1955–1975.CrossRefGoogle Scholar
- Savory, C. J., & Kostal, L. (2006). Is expression of some behaviours associated with de-arousal in restricted-fed chickens? Physiology & Behavior, 88(4–5), 473–478.CrossRefGoogle Scholar
- Schack, B., & Klimesch, W. (2002). Frequency characteristics of evoked and oscillatory electroencephalic activity in a human memory scanning task. Neuroscience Letters, 331(2), 107–110.PubMedCrossRefGoogle Scholar
- Schoffelen, J. M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30(6), 1857–1865.PubMedCrossRefGoogle Scholar
- Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11), 1178–1193.PubMedCrossRefGoogle Scholar
- Stern, Y., Neufeld, M. Y., Kipervasser, S., Zilberstein, A., Fried, I., Teicher, M., & Adi-Japha, E. (2009). Source localization of temporal lobe epilepsy using PCA-LORETA analysis on ictal EEG recordings. Journal of Clinical Neurophysiology, 26(2), 109–116.PubMedCrossRefGoogle Scholar
- Tammela, L. I., Paakkonen, A., Karhunen, L. J., Karhu, J., Uusitupa, M. I., & Kuikka, J. T. (2010). Brain electrical activity during food presentation in obese binge-eating women. Clinical Physiology and Functional Imaging, 30(2), 135–140.PubMedCrossRefGoogle Scholar
- Tiggemann, M., & Kemps, E. (2005). The phenomenology of food cravings: the role of mental imagery. Appetite, 45(3), 305–313.PubMedCrossRefGoogle Scholar
- Tiggemann, M., Kemps, E., & Parnell, J. (2010). The selective impact of chocolate craving on visuospatial working memory. Appetite, 55(1), 44–48.PubMedCrossRefGoogle Scholar
- Tregellas, J. R., Wylie, K. P., Rojas, D. C., Tanabe, J., Martin, J., Kronberg, E., & Cornier, M. A. (2011). Altered default network activity in obesity. Obesity (Silver Spring), 19(12), 2316–2321.CrossRefGoogle Scholar
- Turk-Browne, N. B. (2013). Functional interactions as big data in the human brain. Science, 342(6158), 580–584.PubMedCentralPubMedCrossRefGoogle Scholar
- Volkow, N. D., Wang, G. J., Tomasi, D., & Baler, R. D. (2013). Obesity and addiction: neurobiological overlaps. Obesity Reviews, 14(1), 2–18.PubMedCrossRefGoogle Scholar
- von Deneen, K. M., & Liu, Y. (2011). Obesity as an addiction: Why do the obese eat more? Maturitas, 68(4), 342–345.CrossRefGoogle Scholar
- Yoshikawa, T., Tanaka, M., Ishii, A., Fujimoto, S., & Watanabe, Y. (2014). Neural regulatory mechanism of desire for food: revealed by magnetoencephalography. Brain Research, 1543, 120–127. doi:10.1016/j.brainres.2013.11.005.PubMedCrossRefGoogle Scholar