Brain Behav. 2019 Jan 31:e01218. doi: 10.1002/brb3.1218.
Wang H1, Sun Y1, Lv J1, Bo S1.
Abstract
OBJECTIVES:
Internet addiction (IA) has been associated with widespread brain alterations. Functional connectivity (FC) and network analysis results related to IA are inconsistent between studies, and how network hubs change is not known. The aim of this study was to evaluate functional and topological networks using an unbiased minimum spanning tree (MST) analysis on electroencephalography (EEG) data in IA and healthy control (HC) college students.
METHODS:
In this study, Young’s internet addiction test was used as an IA severity measure. EEG recordings were obtained in IA (n = 30) and HC participants (n = 30), matched for age and sex, during rest. The phase lag index (PLI) and MST were applied to analyze FC and network topology. We expected to obtain evidence of underlying alterations in functional and topological networks related to IA.
RESULTS:
IA participants showed higher delta FC between left-side frontal and parieto-occipital areas compared to the HC group (p < 0.001), global MST measures revealed a more star-like network in IA participants in the upper alpha and beta bands, and the occipital brain region was relatively less important in the IA relative to the HC group in the lower band. The correlation results were consistent with the MST results: higher IA severity correlated with higher Max degree and kappa, and lower eccentricity and diameter.
CONCLUSIONS:
Functional networks of the IA group were characterized by increased FC, a more random organization, and a decrease of relative functional importance of the visual processing area. Taken together, these alterations can help us understand the influence of IA to brain mechanism.
KEYWORDS: EEG; functional connectivity; internet addiction; minimum spanning tree; phase lag index
PMID: 30706671
DOI: 10.1002/brb3.1218